Proper Proxy Scoring Rules
نویسندگان
چکیده
Proper scoring rules can be used to incentivize a forecaster to truthfully report her private beliefs about the probabilities of future events and to evaluate the relative accuracy of forecasters. While standard scoring rules can score forecasts only once the associated events have been resolved, many applications would benefit from instant access to proper scores. In forecast aggregation, for example, it is known that using weighted averages, where more weight is put on more accurate forecasters, outperforms simple averaging of forecasts. We introduce proxy scoring rules, which generalize proper scoring rules and, given access to an appropriate proxy, allow for immediate scoring of probabilistic forecasts. In particular, we suggest a proxy-scoring generalization of the popular quadratic scoring rule, and characterize its incentive and accuracy evaluation properties theoretically. Moreover, we thoroughly evaluate it experimentally using data from a large real world geopolitical forecasting tournament, and show that it is competitive with proper scoring rules when the number of
منابع مشابه
Surrogate Scoring Rules and a Dominant Truth Serum for Information Elicitation
We study information elicitation without verification (IEWV) and ask the following question: Can we achieve truthfulness in dominant strategy in IEWV? is paper considers two elicitation seings. e first seing is when the mechanism designer has access to a random variable that is a noisy or proxy version of the ground truth, with known biases. e second seing is the standard peer prediction ...
متن کاملChoosing a Strictly Proper Scoring Rule
S proper scoring rules, including the Brier score and the logarithmic score, are standard metrics by which probability forecasters are assessed and compared. Researchers often find that one’s choice of strictly proper scoring rule has minimal impact on one’s conclusions, but this conclusion is typically drawn from a small set of popular rules. In the context of forecasting world events, we use ...
متن کاملLoss Functions for Binary Class Probability Estimation and Classification: Structure and Applications
What are the natural loss functions or fitting criteria for binary class probability estimation? This question has a simple answer: so-called “proper scoring rules”, that is, functions that score probability estimates in view of data in a Fisher-consistent manner. Proper scoring rules comprise most loss functions currently in use: log-loss, squared error loss, boosting loss, and as limiting cas...
متن کاملStrictly Proper Scoring Rules, Prediction, and Estimation
Scoring rules assess the quality of probabilistic forecasts, by assigning a numerical score based on the forecast and on the event or value that materializes. A scoring rule is strictly proper if the forecaster maximizes the expected score for an observation drawn from the distribution F if she issues the probabilistic forecast F , rather than any G 6= F . In prediction problems, strictly prope...
متن کاملTailored proper scoring rules elicit decision weights
Proper scoring rules are scoring methods that incentivize honest reporting of subjective probabilities, where an agent strictly maximizes his expected score by reporting his true belief. The implicit assumption behind proper scoring rules is that agents are risk neutral. Such an assumption is often unrealistic when agents are human beings. Modern theories of choice under uncertainty based on ra...
متن کامل